Available online at www.sciencedirect.com
INTERNATIONAL JOURNAL OF

sc.ENCE@D.nEm SOLIDS and
STRUCTURES

www.elsevier.com/locate/ijsolstr

ELSEVIER International Journal of Solids and Structures 42 (2005) 6299-6318

Geometric functions of stress intensity factor solutions
for spot welds in lap-shear specimens

D.-A. Wang ?, P.-C. Lin °, J. Pan >*

& Institute of Precision Engineering, National Chung Hsing University, Taichung 402, Taiwan
® Department of Mechanical Engineering, The University of Michigan, Ann Arbor, MI 48109-2125, USA

Received 22 June 2004; received in revised form 26 May 2005
Available online 20 July 2005

Abstract

In this paper, the stress intensity factor solutions for spot welds in lap-shear specimens are investigated by finite ele-
ment analyses. Three-dimensional finite element models are developed for lap-shear specimens to obtain accurate stress
intensity factor solutions. In contrast to the existing investigations of the stress intensity factor solutions based on the
finite element analyses, various ratios of the sheet thickness, the half specimen width, the overlap length, and the spec-
imen length to the nugget radius are considered in this investigation. The computational results confirm the functional
dependence on the nugget radius and sheet thickness of the stress intensity factor solutions of [Zhang, S., 1997. Stress
intensities at spot welds. International Journal of Fracture 88, 167-185; Zhang, S., 1999. Approximate stress intensity
factors and notch stresses for common spot-welded specimens. Welding Journal 78, 173s-179s]. The computational
results provide some geometric functions in terms of the normalized specimen width, the normalized overlap length,
and the normalized specimen length to the stress intensity factor solutions of [Zhang, S., 1997. Stress intensities at spot
welds. International Journal of Fracture 88, 167-185; Zhang, S., 1999. Approximate stress intensity factors and notch
stresses for common spot-welded specimens. Welding Journal 78, 173s-179s] for lap-shear specimens. The computa-
tional results also indicate that when the spacing between spot welds decreases, the mode I stress intensity factor solu-
tion at the critical locations increases and the mode mixture of the stress intensity factors changes consequently. Finally,
based on the analytical and computational results, the dimensions of lap-shear specimens and the corresponding
approximate stress intensity factor solutions are suggested.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Resistance spot welding is widely used to join sheet metals for automotive components. The fatigue lives
of spot welds have been investigated by many researchers in various types of specimens, for example, see
Zhang (1999). Since the spot weld provides a natural crack or notch along the weld nugget circumference,
fracture mechanics has been adopted to investigate the fatigue lives of spot welds in various types of spec-
imens based on the stress intensity factor solutions at the critical locations of spot welds (Pook, 1975, 1979;
Radaj and Zhang, 1991a,b, 1992; Swellam et al., 1994; Zhang, 1997, 1999, 2001). The stress intensity factors
usually vary point by point along the circumference of spot welds in various types of specimens. Pook
(1975, 1979) gave the maximum stress intensity factor solutions for spot welds in lap-shear specimens,
coach-peel specimens, circular plates and other bending dominant plate and beam specimens. Swellam
et al. (1994) proposed a stress index K; by modifying their stress intensity factor solutions to correlate their
experimental results for various types of specimens. Zhang (1997, 1999, 2001) obtained the stress intensity
factor solutions for spot welds in various types of specimens in order to correlate the experimental results of
spot welds in these specimens under cyclic loading conditions.

In order to obtain accurate stress and strain distributions and/or stress intensity factor solutions for spot
welds in lap-shear specimens, finite element analyses have been carried out by various investigators (Radaj
et al., 1990; Satoh et al., 1991; Deng et al., 2000; Pan and Sheppard, 2002, 2003). Radaj et al. (1990) used a
finite element model where plate and brick elements are used for sheets and spot welds, respectively, to
obtain the stress intensity factor solutions along the nugget circumference for the main cracks in various
specimens. Satoh et al. (1991) conducted three-dimensional elastic and elastic—plastic finite element analyses
to investigate the stress and strain distributions in the symmetry plane near spot welds in lap-shear speci-
mens to identify the fatigue crack initiation sites under high-cycle and low-cycle fatigue loading conditions.
Deng et al. (2000) conducted elastic and elastic—plastic three-dimensional finite element analyses to inves-
tigate the stress fields in and near the nuggets in lap-shear and symmetrical coach peel specimens to under-
stand the effects of the nugget size and the thickness on the interface and nugget pull out failure modes. Pan
and Sheppard (2002) also used a three-dimensional elastic—plastic finite element analysis to correlate the
fatigue lives of spot welds to the cyclic plastic strain ranges for the material elements near the main notch
in lap-shear specimens and modified coach-peel specimens. Pan and Sheppard (2003) conducted a three-
dimensional finite element analysis to investigate the critical local stress intensity factor solutions for kinked
cracks with a nearly elliptical shape emanating from the main notch along the nugget circumference in lap-
shear specimens and modified coach-peel specimens.

Fig. 1 schematically shows a lap-shear specimen used to investigate the strength and fatigue lives of spot
welds under shear dominant loading conditions. The weld nugget is idealized as a circular cylinder as shown
in the figure. The lap-shear specimen has the thickness ¢, the width 21, the nugget radius b, the overlap
length V' of the upper and lower sheets, and the length L as shown in Fig. 1. Note that two spacers of
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Fig. 1. A schematic plot of a lap-shear specimen. The applied force P is shown as the bold arrows. The weld nugget is idealized as a
circular cylinder and shown as a shaded cylinder. The critical locations with the maximum mode I and II stress intensity factors are
marked as point A and point B. The critical locations with the maximum mode I1I stress intensity factor are marked as point C and
point D.
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the length S are attached to the both ends of the lap-shear specimen to induce a pure shear to the interfacial
plane of the nugget for the two sheets and to avoid the initial realignment during testing.

In this paper, we investigate the stress intensity factor solutions for spot welds in lap-shear specimens by
a systematic finite element analysis. Three-dimensional finite element models based on the finite element
model for two circular plates with connection (Wang et al., 2005) are used to obtain the stress intensity fac-
tor solutions for lap-shear specimens. The stress intensity factor solutions as functions of the ratios ¢/b, W/b
and V/b are investigated. The stress intensity factor solutions of our computational results are compared
with some existing computational and closed-form analytical stress intensity factor solutions for lap-shear
specimens. Geometric functions in terms of the ratios W/b, L/b and V/b based on our computational results
are suggested to the stress intensity factor solutions proposed by Zhang (1997, 1999).

2. Stress intensity factor solutions
Pook (1975) obtained stress intensity factor solutions at the critical locations (point A and point B as

shown in Fig. 1) in lap-shear specimens of the thickness ¢ and the nugget radius » under the applied force
P as

P

K1 = 3 02716/ W
P

Kn = -573(0.282 +0.265(5/0)"""] )

Pook (1975) indicated that Egs. (1) and (2) are applicable for b/t < 5 or t/b > 0.2.

As discussed in Swellam et al. (1994), the mode I stress intensity factor solution for spot welds was
obtained from the solutions for two semi-infinite half spaces connected by a circular patch under an axial
force and a moment in Tada et al. (2000). The mode II stress intensity factor solution for spot welds was
approximated from the mode III stress intensity factor solution for two semi-infinite half spaces connected
by a circular patch under a twisting moment in Tada et al. (2000). For lap-shear specimens, the stress inten-
sity factor solutions at the critical locations (point A and point B as shown in Fig. 1) were proposed as
(Swellam et al., 1994)
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Zhang (1997, 1999) obtained the stress intensity factor Kj and Kj; solutions at the critical locations (point
A and point B as shown in Fig. 1) and the stress intensity factor Kjj; solution at the critical locations (point
C and point D as shown in Fig. 1) for lap-shear specimens as

V3P

K= i )
P

KII = Wi (6)
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Note that these solutions were obtained from the closed-form stress solutions for a rigid inclusion under
shear, center bending, counter bending and center twisting loading conditions in an infinite plate and
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the J integral formulation. The functional forms of Zhang’s Kj, Kj; and Ky solutions should be valid for
lap-shear specimens of thin sheets with large ratios of W/b and V/b. Note that Zhang (1997, 1999) approx-
imated the counter bending for the rigid inclusion by a center bending, namely, a moment applied to the
rigid inclusion, to obtain the stress solutions for the derivation of the Kj solution.

In order to investigate the Kj solution for lap-shear specimens with finite geometry under counter bend-
ing, Lin et al. (to be submitted for publication) recently derived the K; solution at the critical locations of a
spot weld connecting at the center of two square plates under an applied counter bending moment M, along
the two edges of each plate per unit length as

K= \fYAgO {2XY + X[-B2 (=1 +v) + W (=1 + )]
— V[P (—1 +v) + 26 W1 +v) — 4B WO (1 +v) + W3 (3 +v)]} (8)

where b is the radius of the spot weld, ¢ is the thickness of the plate, 2 is the width of the plate, and v is the
Poisson’s ratio of the plate material. Here, X and Y are defined as

X = (=14 )b + W —4p*wo(1 +v) (9)
Y =0 (=14v) = W1 +v) (10)

In order to estimate the Kj solution for a “square” lap-shear specimen under the applied force P, the
applied moment M, can be taken as Pt/8W. The details of the validation of the K; solution in Eq. (8)
are reported in Lin et al. (to be submitted for publication). Eq. (8) is used as the basis for the benchmark
of the K solutions obtained from our computations.

3. Finite element analyses

In order to obtain accurate stress intensity factor solutions for spot welds in lap-shear specimens and to
systematically examine the validity of the stress intensity factor solutions of Pook (1975), Swellam et al.
(1994) and Zhang (1997, 1999), three-dimensional finite element analyses are carried out. Note that finite
element analyses were carried out in Pook (1975), Cooper and Smith (1986), Radaj et al. (1990), Pan and
Sheppard (2003) and Zhang (2004) for specific ratios of half specimen width to nugget radius, W/b, specific
ratios of overlap length to nugget radius, V/b, and specific ratios of specimen thickness to nugget radius,
t/b. No systematic investigation of the effects of ¢/b, W/b and V/b exists in the literature. The only system-
atic investigation of the effects of #/b by Pook (1975) appears to give significantly higher stress intensity fac-
tor solutions when compared to the other solutions (Zhang, 1997, 1999, 2004). Therefore, we emphasize our
well-benchmarked finite element models used in this investigation. Our finite element models for lap-shear
specimens are evolved from the three-dimensional finite element model for two circular plates with connec-
tion where a mesh sensitivity study was carried out to benchmark to a closed-form analytical stress intensity
factor solution under axisymmetric loading conditions (Wang et al., 2005). The details to select an appro-
priate three-dimensional mesh for obtaining accurate stress intensity factor solutions for spot welds can be
found in Wang et al. (2005).

Due to symmetry, only a half lap-shear specimen is considered. Fig. 2(a) shows a schematic plot of a half
lap-shear specimen. The specimen has the thickness # (=0.65 mm), the length L (=77.3 mm), the half width
W (=18.9 mm), and the nugget radius b (=3.2 mm) according to the dimensions of the lap-shear specimens
used in Lin et al. (in press). The overlap length V of the upper and lower sheets is 47.1 mm. The two spacers
have the length S (=4.6 mm). Both the upper and lower sheets have the same thickness. A Cartesian coor-
dinate system is also shown in the figure. As shown in Fig. 2(a), a uniform displacement is applied in the —x
direction to the left edge surface of the specimen, and the displacements in the x, y and z directions for the
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Fig. 2. (a) A schematic plot of a half lap-shear specimen with a uniform displacement applied to the left edge surface of the specimen
shown as the bold arrows and the clamped boundary conditions for the right edge surface of the specimen. The shadow represents the
half weld nugget. (b) A mesh for a left half finite element model. (c) A close-up view of the mesh near the main crack tip.

right edge surface of the specimen are constrained to represent the clamped boundary conditions in the
experiment. The displacement in the y direction of the symmetry plane, the x—z plane, is constrained to rep-
resent the symmetry condition due to the loading conditions and the geometry of the specimen. Fig. 2(b)
shows a mesh for a left half finite element model. Fig. 2(c) shows a close-up view of the mesh near the main
crack tip. Note that the main crack is modeled as a sharp crack here. The three-dimensional finite element
mesh near the weld nugget is evolved from the three-dimensional finite element mesh for two circular plates
with connection as discussed in Wang et al. (2005). As shown in Fig. 2(c), the mesh near the center of the
weld nugget is refined to ensure reasonable aspect ratios of the three-dimensional brick elements. The three-
dimensional finite element model for the half lap-shear specimen has 34,248 20-node quadratic brick ele-
ments. The main crack surfaces are shown as bold lines in Fig. 2(c).

In this investigation, the weld nugget and the base metal are assumed to be linear elastic isotropic mate-
rials. The Young’s modulus E is taken as 200 GPa, and the Poisson’s ratio v is taken as 0.3. The commercial
finite element program ABAQUS (Hibbitt et al., 2001) is employed to perform the computations. Brick ele-
ments with quarter point nodes and collapsed nodes along the crack front are used to model the 1/./r sin-
gularity near the crack tip.

First, the distributions of the stress intensity factor solutions along the circumference of the nugget are
investigated here. Fig. 3 shows a top view of a nugget with a cylindrical coordinate system centered at the
nugget center. An orientation angle 6 is measured counterclockwise from the critical location of point B.
Fig. 4 shows the normalized K}, Kjy and Kiyy solutions as functions of 6 for the crack front along the nugget
circumference based on our three-dimensional finite element computations for the lap-shear specimen with
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Fig. 3. A top view of a nugget with an orientation angle § defined as shown. See Fig. 1 for the locations of points A-D.
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Fig. 4. The normalized Kj, Kj; and Kjyp solutions as functions of 6 for the crack front along the nugget circumference based on our
three-dimensional finite element computations for the lap-shear specimen used in Lin et al. (in press).

t/b=0.2, W/b =591, L/b=24.16 and V/b = 14.72. Note that the Kj, K and Kjj; solutions are normalized
by the Kj; solution at the critical location of point A (0 = 180°). As shown in Fig. 4, the maxima of the Kj
solution are located at point B (8 = 0°) and point A (68 = 180°), the maximum and minimum of the Kj; solu-
tion are located at point A (6 = 180°) and point B (8 = 0°), respectively, and the maximum and minimum of
the Ky solution are located at point D (0 = 90°) and point C (0 = 270°), respectively. The results shown in
Fig. 4 indicate that Kij is the dominant stress intensity factor in lap-shear specimens under shear dominant
loading conditions. The distributions of the stress intensity factor solutions along the circumference of the
nugget as shown in Fig. 4 are similar to those in Radaj et al. (1990).

Next, we investigate the effects of the ratio of the sheet thickness ¢ to the nugget radius » on the mode I
and II stress intensity factor solutions at the critical locations (point A and point B as shown in Fig. 1) and
the mode 111 stress intensity factor solution at the critical locations (point C and point D as shown in Fig. 1)
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for the specimens of Lin et al. (in press) with the ratio of W/b =5.91 and V/b = 14.72. Note that the max-
imum magnitudes of the Kj and Kjy occur at point A and point B, whereas the maximum magnitudes of the
K1 oceur at point C and point D. We develop different three-dimensional finite element models by chang-
ing the sheet thickness ¢ with the nugget radius b being fixed. Fig. 5 shows the normalized Kj; solutions at
the critical locations (point A and point B as shown in Fig. 1) as functions of #/b based on our three-dimen-
sional finite element computations and the analytical solutions of Pook (1975) in Eq. (2), Swellam et al.
(1994) in Eq. (4), and Zhang (1997, 1999) in Eq. (6) under the applied load P. The Ky solutions are nor-
malized by Zhang’s solution in Eq. (6), denoted by (Ki1)znhang. Note that for this case, the Ky solution at
point B is negative. But the magnitudes of the Kj; solutions at points A and B are the same. The range
of the ratio #/b is selected from 0.08 to 0.58 to represent the typical values for spot welds used in the auto-
motive industry. As shown in Fig. 5, the normalized Kj; solution based on our three-dimensional finite ele-
ment computations appears to be relatively constant for the ratios of #/b considered. The normalized Ki;
solutions of Pook (1975) and Swellam et al. (1994) show significant deviations from the solutions based
on our three-dimensional finite element computations and the analytical solution of Zhang (1997, 1999).
Note that Pook’s solution is applicable for #/b > 0.2 (Pook, 1975).

The results of our three-dimensional finite element computations confirm the functional dependence of
Zhang’s analytical Ky; solution on the sheet thickness 7 and the nugget radius . Zhang’s analytical Ky solu-
tion will be later used as the basis to express the Kj; solution for lap-shear specimens. Note that the Ky
solution of Zhang (1997, 1999) is obtained from the closed-form stress solution for a rigid inclusion under
shear and center bending loading conditions in an infinite plate and the J integral formulation. For a lap-
shear specimen with a finite width 2, a finite specimen length L and a finite overlap length V, a deviation
from the closed-form analytical solution is possible for finite values of W/b, L/b and V/b. Therefore, the Ky;
solution for lap-shear specimens should be written as

P

(Kll)lap-shear:FU(W/va/b7 V/b) (11)
nh\/t
3.50 T T
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Fig. 5. The normalized Ki; solutions at the critical locations (point A and point B as shown in Fig. 1) as functions of #/b based on our
three-dimensional finite element computations and the analytical solutions for lap-shear specimens. The normalized Kj; solutions based
on our finite element computations and the analytical solutions in Egs. (2), (4) and (6) are marked as FEM, Pook, Swellam et al., and
Zhang, respectively.
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where Fy; is a geometric factor which is a function of W/b, L/b and V/b. Note that the value of L/b is usu-
ally very large for lap-shear specimens. For example, L/b is 24.16 for the specimens of Lin et al. (in press).
The effects of large L/b ’s on the Kj; and Ky solutions should be small and therefore not considered ini-
tially. Also, V/b has a large value of 14.72 for the specimens of Lin et al. (in press). The effects of large
V/b s on the Kj; and Kjyp solutions should be small and therefore are not considered initially. Here, for
the geometry of the specimens of Lin et al. (in press) with W/b =591, L/b=24.16, V/b=14.72 and
t/b = 0.20, the geometric factor Fy is 1.04.

Fig. 6 shows the normalized K solutions at the critical locations (point A and point B as shown in Fig. 1)
for the specimens of Lin et al. (in press) with W/b =591, L/b =24.16 and V/b = 14.72 as functions of #/b
based on our three-dimensional finite element computations and the analytical solutions of Pook (1975) in
Eq. (1), Swellam et al. (1994) in Eq. (3), and Zhang (1997, 1999) in Eq. (5) for lap-shear specimens under the
applied load P. The Kj solutions are normalized by Zhang’s Kj solution in Eq. (5), denoted by (Ki)znang. As
shown in Fig. 6, the normalized K; solution based on our three-dimensional finite element computations
appears to be relatively constant for the range of the ratio #/b considered. The K; solution based on our
three-dimensional finite element computations is nearly 50% higher than that predicted by Zhang’s Kj solu-
tion. The K solutions of Pook (1975) and Swellam et al. (1994) show significant deviations from our three-
dimensional finite element computational solutions and Zhang’s analytical K7 solution. Note again that the
K solution of Zhang (1997, 1999) is based on the closed-form stress solution for a rigid inclusion under cen-
ter bending in an infinite plate and the J integral formulation. The Kj solution based on our three-dimen-
sional finite element computations confirms the dependence of Zhang’s analytical Ky solution on the sheet
thickness 7 and the nugget radius b. Therefore, Zhang’s analytical Kj solution will be used as the basis to ex-
press the Kj solution for lap-shear specimens. For a lap-shear specimen with a finite width 2, a finite spec-
imen length L and a finite overlap length ¥, the deviation of the computational solutions from the closed-
form analytical solution is possible. Therefore, the Kj solution for lap-shear specimens can be written as

V3P
(Kl)lap-shear:FI(W/baL/b’ V/b) (12)
47'Eb\/i
3.50
W/b=5.91 _ .
V/b=14.72 Applicable range for Pook's solution .
3.00 1 1/p=24.16 RN El
2.50 i , T
£ 2.00 |
o 150 0—0—0—0—**_6\0<
100 s S s s s s
- - Zhang
0.50 | L Swellam et al. - -
- - Pook
—— FEM
0 L L
0 0.2 0.4 0.6
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Fig. 6. The normalized Kj solutions at the critical locations (point A and point B as shown in Fig. 1) as functions of #/b based on our
three-dimensional finite element computations and the analytical solutions for lap-shear specimens. The normalized Kj solutions based
on our finite element computations and the analytical solutions in Egs. (1), (3), (5) are marked as FEM, Pook, Swellam et al., and
Zhang, respectively.
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where Fy is a geometric factor which is a function of W/b, L/b and V/b. For the geometry of the specimens
of Lin et al. (in press) with W/b =591, L/b =24.16, V/b =14.72 and t/b = 0.20 considered in this inves-
tigation, the geometric factor is 1.49. Note that the K} solutions of our computational results are substan-
tially higher than those predicted by Zhang’s analytical K} solution. Therefore, the geometric factor Fy is
needed.

Fig. 7 shows the normalized Kyy; solutions at the critical locations (point C and point D as shown in
Fig. 1) for the specimens of Lin et al. (in press) with W/b =591, L/b = 24.16 and V/b = 14.72 as functions
of t/b based on our three-dimensional finite element computations and the analytical solution of Zhang
(1997, 1999) in Eq. (7) for lap-shear specimens under the applied load P. The Kjyy solutions are normalized
by Zhang’s Ky solution in Eq. (7), denoted by (Kiir)zhang. As shown in Fig. 7, the normalized Kiyy solutions
based on our three-dimensional finite element computations appear to be relatively constant for the range
of the ratio #/b considered. The results of our three-dimensional finite element computations confirm the
functional dependence of Zhang’s analytical Ky solution on the sheet thickness ¢ and the nugget radius
b. Zhang’s analytical Ky solution will be used as the basis to express the Kijyp solution for lap-shear spec-
imens. Note that the Ky solution of Zhang (1997, 1999) is obtained from the closed-form stress solution for
a rigid inclusion under twisting conditions in an infinite plate and the J integral formulation. For a lap-
shear specimen with a finite width 21¥, a finite specimen length L and a finite overlap length ¥V, a deviation
from the closed-form analytical solution is possible for finite values of W/b, L/b and V/b. Therefore, the
Ky solution for lap-shear specimens should be written as

P

(KHI)lap-shear :FHI(W/va/bﬂ V/b)m (13)
where Fyyp is a geometric factor which is a function of W/b, L/b and V/b. For the geometry of the specimens
of Lin et al. (in press) with W/b=5.91, L/b =24.16, V/b =14.72 and ¢/b = 0.20 considered in this inves-

tigation, the geometric factor Fyyy is 1.02.
As shown in Figs. 5-7, the Kj, Kiy and Kjyp solutions from our computations show a slight dependence on
t/b. This suggests that as #/b increases, the effects of the thickness increase, and the computational solutions
will deviate from those based on the thin plate theory. In order to validate the closed-form Kj, Kj; and Ky

3.50 T T
W/b=5.91
V/b=14.72
3.00 1 /b=24.16
- - Zhang
—4o— FEM
250
2
% 2.00
\E 1 50 B
¢
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1.00F T e
0.50
0 : :
0 0.2 0.4 0.6
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Fig. 7. The normalized Kjy; solutions at the critical locations (point C and point D as shown in Fig. 1) as functions of #/b based on our
three-dimensional finite element computations and the analytical solution for lap-shear specimens. The normalized Ky solutions based
on our finite element computations and the analytical solution of Zhang in Eq. (7) are marked as FEM and Zhang, respectively.
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solutions based on the thin plate theory, we should pay more attention on the computational solutions for
small #/b’s. We continue the investigation based on the assumption that the geometry factors Fy, Fyy and Fyyp
have a weak dependence on #/b for small values of #/b.

As indicated in Eqgs. (11)—(13), Fy, Fiy and Fiyp should be functions of the three normalized length param-
eters W/b, L/b and V/b. The number of computations is too large for a full-scale numerical investigation of
the three geometric functions Fy, Fy; and Fyyp with the complex coupling effects of the three parameters W/b,
L/b and V/b. Therefore, we choose a large value of L/b where the effects of the applied load clamping
boundary is supposedly minimized. We also choose a large value of V/b where the free surface boundary
condition is supposedly minimized. We take L/b = 24.16, V//b = 14.72 based on the specimens of Lin et al.
(in press). As indicated in Lin et al. (to be submitted for publication), K7 is scaled by an applied counter
bending moment M|, along the plate edge per unit length. Therefore, the effects of the normalized specimen
width W/b on Kj will be most significant.

Now, the effects of W/b on the geometric factors Fy, Fy; and Fyy are investigated. Fig. 8 shows the nor-
malized K; and Kj; solutions at the critical locations (point A and point B as shown in Fig. 1) and the nor-
malized Ky solution at the critical locations (point C and point D as shown in Fig. 1) as functions of W/b
based on our three-dimensional finite element computations for L/b = 24.16, V/b = 14.72 and t/b = 0.20.
The computational Ky, Kj; and Ky solutions, denoted by (K7)rem, (Ki)rem and (Kip)rem, are normalized
by the Kj, Kj; and Ky solutions of Zhang (1997, 1999), denoted by (Ki)zhang, (Ki1)zhang and (Kii1)zhang,
respectively. Therefore, the normalized Kj, Kj; and Kjpp solutions here represent the geometric factors £y,
Fyy and Fyy for V/b=14.72, L/b = 24.16 and /b = 0.20 according to Egs. (12), (11) and (13), respectively.
Note that we select a small value of #/b=0.20 to avoid the effects of the thickness. Six ratios of W/b,
namely, 2.05, 4.70, 5.66, 10.75, 15.59 and 25.27, are considered. Here, the nugget radius b, the nugget thick-
ness ¢, the specimen length L, and the overlap length V" are fixed whereas the half specimen width W is var-
ied in the finite element models. Note that for the specimens of Lin et al. (in press), W/b = 5.91.

As shown in Fig. 8, Fy decreases slightly as W/b increases, and levels off as W/b is greater than 10. As W/b
increases, F; decreases significantly and appears to decrease slowly when W/b is greater than 25. Fiy
increases slightly as W/b increases, and levels off as W/b is greater than 10. It is important to note that when
W/b is greater than 10, Fyyis 1 and Fyyy is nearly 1, which indicates the accuracy of Zhang’s analytical Kj; and
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Fig. 8. The normalized K; and Kjy solutions at the critical locations (point A and point B as shown in Fig. 1) and the normalized Ky
solution at the critical locations (point C and point D as shown in Fig. 1) as functions of W/b based on our three-dimensional finite
element computations for V/b=14.72, t/b =0.2 and L/b = 24.16.
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Kiyp solutions (Zhang, 1997, 1999). In contrast, when W/b increases to 25, Fy is nearly 0.71. As W/b further
increases from 25, Fy seems to decrease slightly based on the trend of F; as the function of W/b. F; should
continue to decrease as W/b increases based on the analytical solution in Egs. (8)—(10). However, it seems
that the rate of decrease slows down as W/b increases further from W/b equal to 15. As also shown in
Fig. 8, when W/b decreases from 5, Fy and Fy; increase significantly and Fyy; decreases slightly. For example,
when W/b equals 2.05, the values of the geometric factors Fy, Fyy and Fyypare 3.32, 1.37 and 0.90, respectively.

Fig. 9 shows the normalized K; and Ky solutions as functions of W/b based on our finite element com-
putations. The K and Kjyp solutions are normalized by the corresponding Ky solutions for the correspond-
ing W/b’s. As shown in Fig. 9, when W/b decreases from 5, the normalized K; and Kjj; solutions change
substantially. This suggests that when the spacing of spot welds decreases, the mixture of the modes at the
critical locations changes significantly. Care should be taken for using the Kj, K3 and Ky solutions for clo-
sely spaced spot welds.

Note that Zhang (1997, 1999) used the analytical stress solution for a rigid inclusion under center bend-
ing in an infinite plate to approximate that under counter bending for the Kj solution in lap-shear speci-
mens. The overestimation of the K solution for large ratios of W/b ’s based on Zhang’s analytical K;
solution can be attributed to this approximation. In order to estimate the Kj solution for lap-shear speci-
mens, Lin et al. (to be submitted for publication) derived the Kj solution (Eq. (8)) at the critical locations
for a spot weld at the center of two square plates under counter bending conditions. Fig. 10 shows the nor-
malized Kj solutions as functions of W/b based on our finite element computations, denoted by (Ky)rem
and the analytical solution of Lin et al. (to be submitted for publication) in Eq. (8), denoted by (Ki)square-
The K solutions are normalized by Zhang’s K; solution, denoted by (Ki)znang- As shown in Fig. 10, the
general trends of the Kj solutions based on our finite element computations and the analytical solution
of Lin et al. (to be submitted for publication) are similar. For W/b ranging from 4.70 to 15.59, the Kj solu-
tions of our finite element computations and Lin et al. (to be submitted for publication) are close to each
other. As W/b increases from 15.59, the solutions of our finite element computations and Lin et al. (to be
submitted for publication) start to deviate from each other. Note that the K| solution of Lin et al. (to be
submitted for publication) is obtained from the solution for a rigid inclusion in a square plate under counter
bending, whereas our finite element models are for lap-shear specimens with different ratios of W/b and
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Fig. 9. The normalized Kj solution at the critical locations (point A and point B as shown in Fig. 1) and the normalized Ky solution at
the critical locations (point C and point D as shown in Fig. 1) as functions of W/b based on our three-dimensional finite element
computations for V/b=14.72, t/b = 0.2 and L/b = 24.16.
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Fig. 10. The normalized K; solutions at the critical locations (point A and point B as shown in Fig. 1) as functions of W/b based on our
three-dimensional finite element computations and the analytical solution of Lin et al. (to be submitted for publication). The
normalized Kj solutions based on our finite element computations and the analytical solution of Lin et al. (to be submitted for
publication) are marked as (Kj)rgm and (Ki)square> respectively. The normalized K; solution based on our finite element computation
for the case of W/b=25.27, V/b =44.16 and L/b =47.36 is marked as (K{)rem square-

specific ratios of V/b (=14.72) and L/b (=24.16). In order to investigate the effects of V/L on the K;
solution, we performed a finite element computation for a nearly square shaped lap-shear specimen
with W=280.85mm, L=151.54mm, V=141.30mm, »=3.20mm and ¢#=0.65mm. For this case,
W/b=25.27, V/b=44.16 and L/b=47.36. The normalized K; solution for this case is presented and
marked by (Ki)rem square i Fig. 10. As shown in the figure, the result of this case is very close to the ana-
lytical solution of Lin et al. (to be submitted for publication) based on the solution for a rigid inclusion in a
square plate with W/b =25.27. Note that W represents the half width of the square plates.

Note that for large W/b’s, the normalized K;, Kj; and Ky solutions do not change significantly as W/b
changes as shown in Fig. 8. In order to understand the effects of the ratio of /b on the K, Kj; and Kiyg
solutions, we develop finite element models for specimens with the ratio of W/b=25.27, L/b=24.16
and #/b = 0.20. Note that the number of computations is too high if we were to investigate the effects of
V/b for different values of W/b. Therefore, we choose a large value of W/b with minimum width effects
to avoid the complex coupling effects of W/b and V/b. We also choose a large value of L/b with minimum
clamped boundary effects to avoid the complex coupling effects of L/b and V/b. These three-dimensional
finite element models have different values of the overlap length V" with the specimen length L, the nugget
radius b, the nugget thickness 7, and the half specimen width W being fixed.

Fig. 11 shows the normalized K7 and Kj; solutions at the critical locations (point A and point B as shown
in Fig. 1) and the normalized Kjj; solution at the critical locations (point C and point D as shown in Fig. 1)
as functions of V/b based on our three-dimensional finite element computations. The computational K}, Ky
and Ky solutions, denoted by (K7)rem, (Ki1)rem and (Kiip)rem, are normalized by the Ky, Kjy and Ky solu-
tions of Zhang (1997, 1999), denoted by (K1)zhang> (Ki1)zhang and (Ki11)znang, respectively. Therefore, the
normalized Kj, Ky; and Ky solutions here represent the geometric factors Fy, Fyp and Fyyp for
W/b=25.27, L/b=24.16 and t/b=0.20 according to Egs. (11)-(13), respectively. Six ratios of V/b,
namely, 5.07, 9.42, 12.56, 14.72, 21.26 and 23.43, are considered. As shown in Fig. 11, Fj, Fj; and Fiyq
appear to be relatively constant when V/b is greater than 14.72. It should be noted that for the ratios of
V/b ranging from 14.72 to 23.43, Fy; is nearly 1, and Fyy is nearly 1.05, which indicates the accuracy of
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Fig. 11. The normalized K7 and Kj; solutions at the critical locations (point A and point B as shown in Fig. 1) and the normalized Kiyy
solution at the critical locations (point C and point D as shown in Fig. 1) as functions of ¥/b based on our three-dimensional finite
element computations for W/b =25.27, t/b=0.2 and L/b = 24.16.

the analytical Ky and Ky solutions of Zhang (1997, 1999). In contrast, Fy is nearly 0.71 for the ratios of V/b
ranging from 14.72 to 23.43. As also shown in Fig. 11, when V/b decreases further from 14.72, F; increases
significantly, Fyjp increases somewhat, and Fy; decreases slightly.

Fig. 12 shows the normalized K; and Kjy; solutions as functions of V/b based on our finite element com-
putations. The Kj and Kjy solutions are normalized by the corresponding Kjy solutions for the correspond-
ing V/b’s. As shown in Fig. 12, the normalized K; and Kjy; solutions stay relatively constant when V/b is
greater than 14.72. When V/b decreases from 14.72, the normalized K; and Kjy; solutions increase substan-
tially. When V/b decreases to 5.07, the Ky solution becomes comparable to the Ky solution, and the K
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Fig. 12. The normalized Kj solution at the critical locations (point A and point B as shown in Fig. 1) and the normalized Kjy; solution
at the critical locations (point C and point D as shown in Fig. 1) as functions of V/b based on our three-dimensional finite element
computations for W/b=25.27, t/b=0.2 and L/b =24.16.
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solution is nearly 65% of the Ky solution. Therefore, the effects of the overlap length of lap-shear specimens
can significantly affect the mixture of the modes at the critical locations for small V/b’s.

We have examined the effects of W/b and V/b on the geometric factors Fy, Fy and Fiyr. Now we examine
the effects of L/b on the geometric factors Fy, Fyy and Fyp. Finite element models for specimens with differ-
ent L/b’s are developed for W/b = 2527, V/b = 14.72 and t/b = 0.20. Here, we take large values of W/b
and V/b with minimum width and overlap length effects to avoid the complex coupling effects of L/b,
W/b and V/b. These three-dimensional finite element models have different values of the specimen length
L with the nugget radius b, the nugget thickness ¢, the half specimen width W, and the overlap length V
being fixed. Fig. 13 shows the normalized K; and Kj; solutions at the critical locations (point A and point
B as shown in Fig. 1) and the normalized Kjj; solution at the critical locations (point C and point D as
shown in Fig. 1) as functions of L/b based on our three-dimensional finite element computations. The com-
putational Kj, Kjj and Kipg solutions, denoted by (Kp)rem, (Ki)rem and (Kp)rem, are normalized by the
K, Kyp and Ky solutions of Zhang (1997, 1999), denoted by (Ki)zhang, (Ki1)zhang and (Kii1)zhang, Te€spec-
tively. Therefore, the normalized Kj, Kj; and Kjyp solutions here represent the geometric factors Fy, Fyy
and Fyyy for W/b =25.27, V/b = 14.72 and t/b = 0.20 according to Eqgs. (11)—(13), respectively. Five ratios
of L/b, namely, 15, 20, 24.16, 30 and 80, are considered.

As shown in Fig. 13, F, Fy; and Fyyp appear to be relatively constant when L/b is greater than 30 (or L/V
is larger than 2.04). It should be noted that for the range of L/b considered, Fyy is nearly 1, and Fyyy is nearly
1.06. The solutions agree with the analytical Kj; and Ky solutions of Zhang (1997, 1999) for spot welds in
plates of infinite size. However, as shown in Fig. 13, as L/b increases, F; decreases and the decrease rate of
F; becomes smaller for L/b larger than 30. F; approximately equals 0.63 for L/b = 30. This indicates that
the effects of the length or the applied clamped boundary condition fade away for L/b larger than 30. For
L/b = 24.16, the effects of the length is still there but not very large as shown in the figure. Therefore, the
selection of L/b =24.16, V/b = 14.72 based on the specimens of Lin et al. (in press) seems to be a good
initial choice to avoid the effects of the clamped boundary and the free surface conditions.

Fig. 14 shows the normalized Kj and Ky solutions as functions of L/b based on our finite element com-
putations. The K1 and Kyyp solutions are normalized by the corresponding Ky solutions for the correspond-
ing L/b’s. As shown in Fig. 14, the normalized K; and Kj;; solutions stay relatively constant when L/b is
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Fig. 13. The normalized K7 and Kj solutions at the critical locations (point A and point B as shown in Fig. 1) and the normalized Ky

solution at the critical locations (point C and point D as shown in Fig. 1) as functions of L/b based on our three-dimensional finite
element computations for W/b =25.27, V/b=14.72 and t/b =0.2.
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Fig. 14. The normalized Kj solution at the critical locations (point A and point B as shown in Fig. 1) and the normalized Kiy; solution
at the critical locations (point C and point D as shown in Fig. 1) as functions of L/b based on our three-dimensional finite element
computations for W/b =25.27, V/b=14.72 and t/b =0.2.

greater than 30. When L/b decreases from L/b = 30, the normalized Kj solution increases substantially and
the normalized Ky solution decreases slightly. When L/b decreases to 15, the Kjy; solution is nearly 74% of
the Kiy solution, and the Kj solution is nearly 41% of the Ky solution. Therefore, the effects of the specimen
length of lap-shear specimens can significantly affect the mixture of the modes at the critical locations for
small L/b’s.

Based on the results of our finite element computations, the functional dependence of the geometric fac-
tors Fy, Fyp and Fyp on W/b, L/b and V/b are investigated under the conditions with minimum coupling
effects of W/b, L/b and V/b. As shown in Fig. 8, the influence of W/b’s on the geometric factors Fy; and
Fipp is weak for W/b > 15. As shown in Fig. 11, the influence of V/b’s on the geometric factors Fyy and Fiyp
is weak for V/b > 15. As shown in Fig. 13, the influence of L/b’s on the geometric factors Fy, Fy; and Fyyy is
weak for L/b > 30. Therefore, for a lap-shear specimen with W/b > 25, V/b> 15 and L/b > 30, the depen-
dence of the geometric factors Fy, Fy; and Fyy on W/b, V/b and L/b is minimum. This can be used as a
design guideline for lap-shear specimens in the future.

In general, the values of V/b and L/b for specimens are large and therefore V/b > 15 and L/b > 30 are
recommended for design of lap-shear specimens. Then the geometric functions presented in Fig. § for
L/b=24.16, V/b=14.72 and t/b = 0.20 can be used to estimate the geometric function for specimens with
different widths. Based on the results presented in Fig. 8 for engineering applications, we proposed that the
lap-shear specimen should be made with W/b > 5, V/b > 15 and L/b > 30. The stress intensity factor solu-
tions for specimens with the clamped loading conditions and the size requirements given above can be
approximated in closed-form as

_3p B (=14 2014y

KI_—XYVW%{zXY+X[ b (=1 +v)+ W (=1 +v)]
— Y[ (=1 +v) + 26" W1 +v) — 40*WE(1 +v) + WE(3 +v)]} (14)
__P 15
II—WE ( )
Ky—=_ 1 (16)
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where X and Y are defined in Egs. (9) and (10). Note that Eq. (14) is derived from the analytical solution in
Eq. (8). Eq. (14) is a good approximate solution for the computational results shown in Fig. 10.

Now it is clear that the Kj, Kj; and Kjpp solutions may be scaled by the nugget radius » and the sheet
thickness ¢ as in Eqs. 12,11,13 for large W/b’s, L/b’s and V/b’s. For the specimen geometry with
W/b=15091, L/b=24.16 and V/b=14.72 investigated here, the values of the geometric factors Fy, Fy
and Fyyp are 1.49, 1.04 and 1.02, respectively. Recently, a two-dimensional elastic finite element analysis
of a rigid inclusion with a radius of 4 in a finite width specimen with a width of 2 was performed by
Lin et al. (2004). The results indicate that when the ratio of W/b is greater than 10, the radial stress at
the critical locations of the nugget is close to the analytical solution for a rigid inclusion in an infinite plate.
However, when the ratio of W/b decreases from 10, the radial stress at the critical locations of the nugget
increases. The radial stress at the critical locations of the rigid inclusion is the starting point in the devel-
opment of Zhang’s stress intensity factor solutions (Zhang, 1997, 1999). It is clear that the analytical solu-
tions of Zhang (1997, 1999) can characterize well the trends of the Kj, Kj; and Kjpp solutions based on our
three-dimensional finite element computations for large W/b’s, L/b’s and V/b’s. However, the geometric
factors Fi, Fi; and Fypp are needed to account for the effects of the specimen width 2, the specimen length
L and the overlap length V" of the upper and lower sheets.

Now we attempt to make a comparison of the existing computational stress intensity factor solutions
with our computational results. We select the results from the three-dimensional finite element computation
of Pan and Sheppard (2003) and a simplified finite element computation of Zhang (2004). First, we list the
normalized Kj, Kj; and Kjyp solutions at the critical locations by the analytical solutions of Zhang (1997,
1999) from our computations (listed as Wang et al., 2005), Pan and Sheppard (2003) and Zhang (2004)
without consideration of the effects of #/b, W/b, L/b and V/b in Table 1. As listed in Table 1, we may
not be able to judge the validity of the three solutions. Next, we consider the effects of W/b, L/b and
V/b. Table 2 lists the values of t/b, W/b, L/b and V/b for the specimens used in our computation, Pan
and Sheppard (2003) and Zhang (2004). Note that L/b is 33 for specimens used in Pan and Sheppard
(2003) and L/b for specimens of Zhang (2004) is not available.

The geometry factors Fy, Fiy and Fyyp for the solutions of Pan and Sheppard (2003) and Zhang (2004) are
interpolated by a three-step approach. The interpolation method is approximate in nature since we do not
have the results to account for the coupling effects of W/b, L/b and V/b in this investigation. First, the
initial values of Fj, Fi; and Fyyp are obtained from Fig. 8 by linear interpolation to account for the effects
of W/b. Note that the results in Fig. 8 are for L/b =24.16, V/b = 14.72 and t/b = 0.2. Then, the initial
values of Fy, Fy; and Fyyp are multiplied by the ratios of Fy, Fyy and Fyyp for a given V/b to Fy, Fyy and Fyyy

Table 1
Normalized computational K, Kj; and Kjyp solutions at the critical locations by the analytical solutions of Zhang (1997, 1999) from our
computations (listed as Wang et al., 2005), Pan and Sheppard (2003), and Zhang (2004)

Kl/(Kl)Zhung Kll/(Kll)Zhang Klll/(Klll)Zhang

Wang et al. (2005) 1.49 1.04 1.02
Pan and Sheppard (2003) 1.24 0.96 N/A
Zhang (2004) 1.19 1.02 1.01
Table 2
Values of Fi, Fy; and Fyyy for different specimen geometries of Wang et al. (2005), Pan and Sheppard (2003), and Zhang (2004)

t/b w/b Vib L/b Iy I Fi
Wang et al. (2005) 0.20 591 14.72 24.16 1.49 1.04 1.02
Pan and Sheppard (2003) 0.47 5.50 10.00 33 1.44 1.06 1.01

Zhang (2004) 0.40 8.00 12.80 NA 1.18 1.03 1.02
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for V/b=14.72 interpolated from the results presented in Fig. 11 for W/b=25.27, L/b=24.16 and
t/b =0.2. Finally, the values of Fy, Fy; and Fyyp are multiplied by the ratios of Fy, Fy; and Fyyp for a given
L/b to F, Fyy and Fyy for L/b=24.16 interpolated from the results presented in Fig. 13 for
Wb =25.27, V/b=14.72 and t/b =0.2. Since L/b = 33 for specimens used in Pan and Sheppard (2003),
the ratios for Fy, Fy; and Fyyy to account for the effects of L/b are nearly 1. Since the value of L/b for spec-
imens used in Zhang (2004) is not available, the ratios to account for the effects of L/b for Fy, Fy; and Fyyy
are taken as 1. Table 2 lists the values of Fj, Fi; and Fyp for the three cases. As listed in the table, Fj is much
greater than 1 for the three cases, whereas Fy; and Fyyp are close to 1 for the three cases.

Table 3 lists the normalized KI, KII and KIII solutions by FI(KI)Zhanga FII(KII)Zhang and FIII(KIII)Zhang»
respectively. As listed in Table 3, the normalized K, Kj; and Ky solutions of Zhang (2004) are quite close
to 1. This indicates that the geometric functions Fy, Fiy and Fyyp based on our computational results are
indeed needed and useful to scale the K, Kj; and Kjyp solutions, and/or the solutions of Zhang (2004)
are quite accurate. On the other hand, the normalized K; and Kj; solutions of Pan and Sheppard (2003)
are not so close to 1. Note that the effects of #/b cannot be accounted for by Fy, Fy; and Fyyy, and the cou-
pling effects of W/b, L/b and V/b cannot be accounted for based on our interpolation method. The deter-
mination of Fy, Fy; and Fyyy is based on the computational results for the small ratio of #/b=0.2. The
deviation from 1 of the normalized K7 and Kj; solutions of Pan and Sheppard (2003) may be partly due
to the large ratio of #/b = 0.47 compared to the ratio of ¢/b = 0.2 and 0.4 of Lin et al. (in press) and Zhang
(2004), respectively.

Here, we attempt to account for the effects of #/b on the Kj, Kj; and Kiyp solutions based on the weak
functional dependence of Kj, Kj; and Ky solutions on #/b shown in Figs. 5-7 for W/b =591,

Table 3
Normalized computational Kj, Ky and Ky solutions at the critical locations by Fy(Ki)zhang, F1i(Ki)zhang and Fi(Kim)zhang
respectively, for different specimen geometries of Wang et al. (2005), Pan and Sheppard (2003), and Zhang (2004)

KI/FI(K[)Zhang KII/FII(KU)Zhang K[II/FIII(KIII)Zhang
Wang et al. (2005) 1.00 1.00 1.00
Pan and Sheppard (2003) 0.86 0.91 N/A
Zhang (2004) 1.01 0.99 0.99
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Fig. 15. The normalized Kj; solutions at the critical locations (point A and point B as shown in Fig. 3) as a function of #/b based on our
three-dimensional finite element computations, Pan and Sheppard (2003) and Zhang (2004). The normalized Kj; solutions based on our
finite element computations, Pan and Sheppard (2003) and Zhang (2004) are marked as FEM, Pan and Sheppard (2003), FEM, and
Zhang (2004), FEM, respectively.
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L/b=24.16 and V/b = 14.72. Fig. 15 shows the normalized Kj; solutions at the critical locations (point A
and point B as shown in Fig. 1) based on our finite element computations, the three-dimensional finite ele-
ment computations of Pan and Sheppard (2003), and the simplified finite element computation of Zhang
(2004). Here, the Ky solutions are normalized by Fyy(Ki1)zhang. As shown in Fig. 15, the normalized Kjy;
solution based on the simplified finite element computation of Zhang (2004) for #/b = 0.4, W/b =8, and
V/b = 12.8 is still nearly the same as that based on our finite element computations. The normalized Kj;
solution based on the three-dimensional finite element computation of Pan and Sheppard (2003) for
t/b=0.47, W/b =5.50, L/b =33 and V/b = 10 becomes lower than our computational Kj; solution.

Fig. 16 shows the normalized K; solutions at the critical locations (point A and point B as shown in
Fig. 1) based on our computational results, the three-dimensional finite element computation of Pan and
Sheppard (2003) and the simplified finite element computation of Zhang (2004). Here, the Kj solutions
are normalized by Fi(Ki)zhang. As shown in Fig. 16, the normalized K; solution based on the simplified finite
element computation of Zhang (2004) for ¢/b = 0.4, W/b =8, and V/b = 12.8 becomes slightly higher than
our computational solution. The normalized Kj solution based on the three-dimensional finite element com-
putation of Pan and Sheppard (2003) for #/b=0.47, W/b =5.50, L/b =33 and V/b = 10 in fact becomes
closer to our computational solution. Fig. 17 shows the normalized Ky solutions at the critical locations
(point C and point D as shown in Fig. 1) based on our finite element computations and the simplified finite
element computation of Zhang (2004). Here, the Ky solutions are normalized by Fiji(Kii1)zhang. As shown
in Fig. 17, the normalized Kjjy solution based on the simplified finite element computation of Zhang (2004)
for t/b=0.4, W/b =28, and V/b = 12.8 becomes slightly less than our computational solution.

Note that a mesh sensitivity study for the finite element model used in this investigation has been per-
formed in Wang et al. (2005). The stress intensity factor solution based on the finite element model was well
benchmarked to the analytical solution for circular plates and cylindrical cup specimens under axisymmet-
ric loading conditions. On the other hand, Pan and Sheppard (2003) used the sub-modeling technique in
ABAQUS (Hibbitt et al., 2001) to obtain their stress intensity factor solutions. Pan and Sheppard (2003)
did not conduct a mesh sensitivity study to examine the accuracy of their stress intensity factor solutions
with respect to any known analytical solutions. Therefore, more confidence can be placed on the accuracy
of our stress intensity factor solutions. The differences of the stress intensity factor solutions of this
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Fig. 16. The normalized K solutions at the critical locations (point A and point B as shown in Fig. 1) as a function of #/b based on our
three-dimensional finite element computations, Pan and Sheppard (2003) and Zhang (2004). The normalized Kj solutions based on our
finite element computations, Pan and Sheppard (2003) and Zhang (2004) are marked as FEM, Pan and Sheppard (2003), FEM, and
Zhang (2004), FEM, respectively.
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Fig. 17. The normalized Kjy; solutions at the critical locations (point C and point D as shown in Fig. 1) as a function of #/b based on
our three-dimensional finite element computations and that of Zhang (2004). The normalized Kjy; solutions based on our finite element
computations and Zhang (2004) are marked as FEM and Zhang (2004), FEM, respectively.

investigation and Pan and Sheppard (2003) shown in Figs. 15 and 16 may be due to the inaccuracy of the
stress intensity factor solutions of the sub-modeling technique in Pan and Sheppard (2003) or the interpo-
lation method from our limited sets of computational results.

4. Conclusions and discussions

Three-dimensional finite element analyses are carried out to investigate the stress intensity factor solu-
tions for spot welds at the critical locations in lap-shear specimens. The mode I and II stress intensity factor
solutions at the critical locations (point A and point B as shown in Fig. 1) and the mode III stress intensity
factor solution at the critical locations (point C and point D as shown in Fig. 1) for spot welds in lap-shear
specimens are obtained by three-dimensional finite element computations. The solutions can be correlated
with those based on Zhang’s solutions (Zhang, 1997, 1999) with new geometric functions in terms of the
normalized specimen width, the normalized specimen overlap length and the normalized specimen length.
The computational results confirm the functional dependence on the nugget radius and sheet thickness of
the stress intensity factor solutions of Zhang (1997, 1999). The computational results indicate that as the
normalized specimen width changes, the geometric functions change. The results suggest that when the
spacing of spot welds decreases, the mode mixture of mode I, IT and III stress intensity factors at the critical
locations can change substantially. As the normalized overlap length or specimen length decreases, the geo-
metric function for mode I stress intensity factor at the critical locations also changes significantly, and the
mode mixture at the critical locations therefore changes significantly. Finally, based on the analytical and
computational results, the dimensions of lap-shear specimens and the corresponding approximate stress
intensity factor solutions are suggested. The geometric functions can be complex functions of the normal-
ized sheet thickness, normalized specimen width, normalized specimen length and normalized specimen
overlap length. Therefore, consideration of the geometric functions for stress intensity factor solutions
can be useful to examine the existing fatigue data for spot welds in lap-shear specimens of various dimen-
sions. The use of the stress intensity factor solutions to predict the fatigue lives of spot welds has been
addressed in Newman and Dowling (1998), Lin and Pan (2004), Lin et al. (in press) and Lin et al.
(2005) for fatigue life prediction of spot friction welds in lap-shear specimens.
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